



**Communications in Statistics: Case Studies, Data Analysis and Applications** 

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ucas20

# Bounded area as a measure of volatility for financial time series

Ferebee Tunno & Latia Carraway

To cite this article: Ferebee Tunno & Latia Carraway (2022): Bounded area as a measure of volatility for financial time series, Communications in Statistics: Case Studies, Data Analysis and Applications, DOI: 10.1080/23737484.2021.2019143

To link to this article: https://doi.org/10.1080/23737484.2021.2019143



Published online: 21 Feb 2022.



Submit your article to this journal 🗗



View related articles



🕖 View Crossmark data 🗹



Check for updates

# Bounded area as a measure of volatility for financial time series

Ferebee Tunno and Latia Carraway

Department of Mathematics and Statistics, Arkansas State University, Jonesboro, Arkansas, USA

#### ABSTRACT

This article presents a new way to measure the volatility of financial time series, which is shown to be on a par with arc length for such endeavors. An application involving the clustering of 30 prominent stocks is presented as well. **ARTICLE HISTORY** 

Received May 2021 Accepted December 2021

#### KEYWORDS

Bounded area; arc length; volatility; *k*-means++; Rand index

# 1. Introduction

This article puts forward "bounded area" as a valid measure of volatility for financial time series. The next section defines that term as well as its "arc length" counterpart. It then goes on to give a history of the two concepts in the academic literature. Section 3 outlines the k-means++ clustering algorithm as well as the details behind the Rand index. Both are then used in Section 4 to cluster and analyze a collection of 30 prominent stocks via bounded area, arc length, and the standard deviation of returns. Finally, Section 5 puts forward a geometric hypothesis.

# 2. Bounded Area and Arc Length

Observe the scatterplot of an arbitrary mean-zero process shown in Fig. 1. Typically, one "connects the dots" for better presentation as shown in Fig. 2. The sum of the lengths of these line segments is called the *arc length*. The shaded region between these line segments and the time axis shown in Fig. 3 is called the *bounded area*.

If  $\{X_t\}$  is a mean-zero time series observed at times t = 1, 2, ..., n, then the magnitude of its bounded area is equal to

$$\sum_{t=2}^{n} \left[ \int_{t-1}^{t} \left| (X_t - X_{t-1})(u-t) + X_t \right| du \right], \tag{1}$$

CONTACT Ferebee Tunno ftunno@astate.edu Department of Mathematics and Statistics, Arkansas State University, P.O. Box 70, State University, Arkansas 72467, USA © 2022 Taylor & Francis Group, LLC



Figure 1. A scatterplot of an arbitrary mean-zero time series.



Figure 2. The same scatterplot from Figure 1, but with line segments connecting adjacent points.



Figure 3. The region between the line segments and the time axis from Figure 2.

while its arc length is equal to

$$\sum_{t=2}^{n} \sqrt{1 + (X_t - X_{t-1})^2} \,. \tag{2}$$

Note that the mean-zero assumption is necessary for (1), but unnecessary for (2). That is, if we define a new process  $\{Y_t\}$  such that  $Y_t = X_t + k$  with  $k \neq 0$ , then the arc length calculations for  $\{X_t\}$  and  $\{Y_t\}$  over t = 1, 2, ..., n will be the same, while the bounded area calculations will be different and only correct for  $\{X_t\}$ .

Tunno (2015) showed that if two independent, stationary, mean-zero ARMA processes with finite second moments are observed over the same period, then a significant difference between their bounded area magnitudes implies a significant difference between their autocovariance structures. Tunno, Gallagher, and Lund (2012) showed that if two independent, stationary ARMA processes with finite fourth moments are observed over the same period, then a significant difference between their arc lengths implies a significant difference between their autocovariance structures.

Tunno and Perry (2022) showed that if two independent, mean-zero signalplus-noise processes are observed over the same period, then a significant difference between their bounded area magnitudes implies a significant difference between their underlying structures. They also showed the same to be true for arc length, but revealed that bounded area is a better discriminant between such 4 😉 F. TUNNO AND L. CARRAWAY

signals. Tunno (2015) also demonstrated that bounded area distinguishes more accurately than arc length.

Wickramarachchi and Tunno (2015) showed that arc length is a suitable measure of volatility for financial time series and can be used to sort such series into meaningful clusters. In Section 4, the authors will make the case that bounded area is also a credible measure of volatility when clustering financial time series.

# 3. k-means++ algorithm and the Rand index

There are a wide variety of ways to cluster time series data. For a nice survey of all such techniques, see Liao (2005). In this section, the particular clustering algorithm known as k-means++ is explained.

The original k-means algorithm for partitioning a numerical data set into k disjoint subsets/clusters was first created by MacQueen (1967) and goes as follows:

- 1. Choose the number of clusters *k* for your set *S*.
- 2. Randomly partition *S* into *k* clusters and determine their centers (averages) or directly generate *k* random points as cluster centers.
- 3. Assign each member from *S* to the nearest cluster, using some pre-chosen distance norm.
- 4. Recompute the new cluster centers.
- 5. Repeat steps 3 and 4 until things stabilize.

The *k*-means++ algorithm, proposed independently by Ostrovsky et al. (2012) and Arthur and Vassilvitskii (2007), improves upon the regular *k*-means algorithm by more carefully selecting the initial centers. *k*-means++ greatly reduces the possibility of suboptimal clustering by substituting the following algorithm in for the initial random partitioning of data points:

- 1. Choose one center uniformly at random from among the data points.
- 2. For each data point x, compute the distance D(x) between x and the nearest center that has already been chosen.
- 3. Add one new data point at random as a new center, using a weighted probability distribution where point *x* is chosen with probability proportional to  $(D(x))^2$ .
- 4. Repeat steps 2 and 3 until k distinct centers have been chosen.

Now consider a set of elements  $S = \{O_1, O_2, ..., O_N\}$  with partitions  $X = \{x_1, x_2, ..., x_k\}$  and  $Y = \{y_1, y_2, ..., y_k\}$ . Next, define the following:

a = the number of pairs of elements in *S* that are in the same clusters of *X* and also the same clusters of *Y* 

- b = the number of pairs of elements in *S* that are in different clusters of *X* and also different clusters of *Y*
- c = the number of pairs of elements in *S* that are in the same clusters of *X* but different clusters of *Y*
- d = the number of pairs of elements in *S* that are in different clusters of *X* but the same clusters of *Y*

We then calculate the Rand index as follows:

$$\frac{a+b}{a+b+c+d} = \frac{a+b}{\binom{N}{2}} = \frac{2(a+b)}{N(N-1)}$$

This index is a number between 0 and 1 and gives the proportion of time that X and Y cluster S in the same manner. See Rand (1971) for further details.

Now consider the following contingency table, where  $n_{ij}$  stands for the number of elements from *S* that are contained in both  $x_i$  and  $y_j$ :

|       | <i>y</i> 1             | <i>y</i> <sub>2</sub> | •••     | $y_k$    |                       |
|-------|------------------------|-----------------------|---------|----------|-----------------------|
| $x_1$ | <i>n</i> <sub>11</sub> | $n_{12}$              | • • •   | $n_{1k}$ | <i>a</i> <sub>1</sub> |
| $x_2$ | <i>n</i> <sub>21</sub> | $n_{22}$              | •••     | $n_{2k}$ | <i>a</i> <sub>2</sub> |
| ÷     | ÷                      | ÷                     | ۰.      | ÷        | :                     |
| $x_k$ | $n_{k1}$               | $n_{k2}$              | • • •   | $n_{kk}$ | $a_k$                 |
|       | $b_1$                  | $b_2$                 | • • • • | $b_k$    | N                     |

We then calculate the *adjusted Rand index* as follows:

$$\frac{\sum_{i=1}^{k} \sum_{j=1}^{k} \binom{n_{ij}}{2} - \left[\sum_{i=1}^{k} \binom{a_i}{2} \sum_{j=1}^{k} \binom{b_j}{2}\right] / \binom{N}{2}}{\frac{1}{2} \left[\sum_{i=1}^{k} \binom{a_i}{2} + \sum_{j=1}^{k} \binom{b_j}{2}\right] - \left[\sum_{i=1}^{k} \binom{a_i}{2} \sum_{j=1}^{k} \binom{b_j}{2}\right] / \binom{N}{2}}$$

This index is a "corrected-for-chance" version of the Rand Index and is also a number bounded above by 1, but has the potential to be negative. See Hubert and Arabie (1985) for further details.

# 4. Application

Table 1 below lists 30 stocks that the authors believe currently provide a reasonable representation of consequential American market activity. Also included are their bounded area and arc length values using adjusted closing prices from January 2013 to December 2019 (n = 1,762). In this section, these stocks will be clustered via the *k*-means++ algorithm<sup>1</sup> using bounded area and arc length as surrogates for volatility.

### 6 🔄 F. TUNNO AND L. CARRAWAY

| Ticker | Stock                          | Bounded area | Arc length |
|--------|--------------------------------|--------------|------------|
| GOOG   | Alphabet, Inc.                 | 420794.1     | 14341.55   |
| AMZN   | Amazon                         | 879981.8     | 19415.68   |
| AXP    | American Express               | 26650.25     | 2328.659   |
| AMGN   | Amgen, Inc.                    | 50385.62     | 3478.884   |
| AAPL   | Apple                          | 78329.77     | 3303.17    |
| BIIB   | Biogen                         | 72078.95     | 7925.215   |
| BA     | Boeing                         | 168208.1     | 4690.726   |
| BP     | British Petroleum              | 7968.605     | 1894.525   |
| CAT    | Caterpillar                    | 45777.15     | 2833.432   |
| CVX    | Chevron                        | 19945.89     | 2534.194   |
| С      | Citigroup                      | 16718.25     | 2158.694   |
| КО     | Coca Cola                      | 8546.052     | 1859.205   |
| DD     | DuPont                         | 22072.23     | 2418.913   |
| XOM    | Exxon Mobil                    | 6336.809     | 2167.457   |
| FB     | Facebook                       | 81377.65     | 3400.563   |
| GE     | General Electric               | 8830.629     | 1814.721   |
| HD     | Home Depot                     | 74493.22     | 2837.987   |
| HON    | Honeywell International        | 51124.86     | 2485.025   |
| INTC   | Intel                          | 16137.09     | 1978.727   |
| IBM    | International Business Machine | 16601.37     | 2901.64    |
| JNJ    | Johnson & Johnson              | 35178.64     | 2345.988   |
| JPM    | J.P. Morgan Chase              | 42356.54     | 2279.517   |
| MCD    | McDonald's                     | 65531.2      | 2541.402   |
| MRK    | Merck                          | 18004.95     | 2048.75    |
| MSFT   | Microsoft                      | 51480.39     | 2286.635   |
| PG     | Proctor & Gamble               | 19546.61     | 2117.501   |
| UTX    | United Technologies            | 24954.44     | 2509.084   |
| VZ     | Verizon                        | 10056.64     | 1919.712   |
| WMT    | Wal-Mart                       | 24149.18     | 2164.447   |
| DIS    | Walt Disney                    | 29905.43     | 2458.388   |

 Table 1. Thirty stocks along with their bounded area and arc length values using adjusted closing prices from January 2013 to December 2019.

Table 2. Three clusters using bounded area (left) and arc length (right).

| Cluster 1 | XOM  | BP   | KO   | GE  | Cluster 1 | GE   | KO   | BP  | VZ   |
|-----------|------|------|------|-----|-----------|------|------|-----|------|
|           | VZ   | INTC | IBM  | С   |           | INTC | MRK  | PG  | С    |
|           | MRK  | PG   | CVX  | DD  |           | WMT  | XOM  | JPM | MSFT |
|           | WMT  | UTX  | AXP  | DIS |           | AXP  | JNJ  | DD  | DIS  |
|           | JNJ  |      |      |     |           | HON  | UTX  | CVX | MCD  |
| Cluster 2 | JPM  | CAT  | AMGN | HON |           | CAT  | HD   | IBM | AAPL |
|           | MSFT | MCD  | BIIB | HD  |           | FB   | AMGN |     |      |
|           | AAPL | FB   |      |     | Cluster 2 | BA   |      |     |      |
| Cluster 3 | BA   |      |      |     | Cluster 3 | BIIB |      |     |      |

Although not shown here, initial efforts to use the k-means++ algorithm to cluster the stocks in Table 1 according to their bounded area and arc length values always resulted in Google and Amazon constituting their own (upper) clusters. So as not to let these two "outlier" stocks obscure further partitioning among the other 28 stocks that might be meaningful, they will henceforward not be considered.

Tables 2–5 show the results of using the *k*-means++ algorithm to cluster the stocks listed in Table 1 according to their bounded area and arc length values, but now with Amazon and Google removed. This time around, Boeing is always its own cluster.

Table 3. Four clusters using bounded area (left) and arc length (right).

| Cluster 1 | XOM | BP   | KO  | GE   |
|-----------|-----|------|-----|------|
|           | VZ  | INTC | IBM | С    |
|           | MRK | PG   | CVX | DD   |
|           | WMT | UTX  | AXP | DIS  |
| Cluster 2 | JNJ | JPM  | CAT | AMGN |
|           | HON | MSFT |     |      |
| Cluster 3 | MCD | BIIB | HD  | AAPL |
|           | FB  |      |     |      |
| Cluster 4 | BA  |      |     |      |

Table 4. Five clusters using bounded area (left) and arc length (right).

| Cluster 1 | XOM  | BP   | КО   | GE   |
|-----------|------|------|------|------|
|           | VZ   |      |      |      |
| Cluster 2 | INTC | IBM  | С    | MRK  |
|           | PG   | CVX  | DD   | WMT  |
|           | UTX  | AXP  | DIS  | JNJ  |
| Cluster 3 | JPM  | CAT  | AMGN | HON  |
|           | MSFT |      |      |      |
| Cluster 4 | MCD  | BIIB | HD   | AAPL |
|           | FB   |      |      |      |
| Cluster 5 | BA   |      |      |      |

Table 5. Six clusters using bounded area (left) and arc length (right).

| Cluster 1 | XOM<br>VZ | BP   | KO  | GE   |
|-----------|-----------|------|-----|------|
| Cluster 2 | INTC      | IBM  | С   | MRK  |
|           | PG        | CVX  | DD  | WMT  |
|           | UTX       | AXP  |     |      |
| uster 3   | DIS       | JNJ  | JPM |      |
| uster 4   | CAT       | AMGN | HON | MSFT |
| ster 5    | MCD       | BIIB | HD  | AAPL |
|           | FB        |      |     |      |
| uster 6   | BA        |      |     |      |

For perspective, Table 6 shows the standard deviation of returns for all 30 stocks during the period January 2013 through December 2019. Specifically, if  $\{X_t\}$  is a time series observed at times t = 1, 2, ..., n with  $D_t := X_t - X_{t-1}$  for t = 2, 3, ..., n, then that standard deviation takes the form

$$\widehat{\sigma} = \sqrt{\frac{1}{n-2} \sum_{t=2}^{n} (D_t - \overline{D})^2},$$

where

$$\bar{D} = \frac{1}{n-1} \sum_{t=2}^{n} D_t \, .$$

This is a common measure of the *volatility* of a stock. For a nice review of volatility in general, see Poon and Granger (2003).

#### 8 🕒 F. TUNNO AND L. CARRAWAY

| Ticker | Stock                          | Std. Dev. of Returns |
|--------|--------------------------------|----------------------|
| GOOG   | Alphabet, Inc.                 | 12.34592             |
| AMZN   | Amazon                         | 18.73062             |
| AXP    | American Express               | 1.026904             |
| AMGN   | Amgen, Inc.                    | 2.158978             |
| AAPL   | Apple                          | 2.121515             |
| BIIB   | Biogen                         | 6.899412             |
| BA     | Boeing                         | 3.774907             |
| BP     | British Petroleum              | 0.4198629            |
| CAT    | Caterpillar                    | 1.617281             |
| CVX    | Chevron                        | 1.217688             |
| C      | Citigroup                      | 0.7903046            |
| КО     | Coca Cola                      | 0.364998             |
| DD     | DuPont                         | 1.1292               |
| XOM    | Exxon Mobil                    | 0.802288             |
| FB     | Facebook                       | 2.373291             |
| GE     | General Electric               | 0.2585365            |
| HD     | Home Depot                     | 1.608202             |
| HON    | Honeywell International        | 1.203946             |
| INTC   | Intel                          | 0.587934             |
| IBM    | International Business Machine | 1.66925              |
| JNJ    | Johnson & Johnson              | 1.087777             |
| JPM    | J.P. Morgan Chase              | 0.9626558            |
| MCD    | McDonald's                     | 1.321727             |
| MRK    | Merck                          | 0.6708082            |
| MSFT   | Microsoft                      | 1.023353             |
| PG     | Proctor & Gamble               | 0.7695518            |
| UTX    | United Technologies            | 1.219441             |
| VZ     | Verizon                        | 0.4645543            |
| WMT    | Wal-Mart                       | 0.8837024            |
| DIS    | Walt Disney                    | 1.218841             |

| Table 6. | <ul> <li>Thirty stocks along with the standard dev</li> </ul> | viation of their returns using adjusted closing prices |
|----------|---------------------------------------------------------------|--------------------------------------------------------|
| from Jan | nuary 2013 to December 2019.                                  |                                                        |

**Table 7.** Three (left) and four (right) clusters using  $\hat{\sigma}$ .

| Cluster 1 | GE   | KO   | BP  | VZ   | Cluster 1 | GE   | KO   | BP   |
|-----------|------|------|-----|------|-----------|------|------|------|
|           | INTC | MRK  | PG  | С    |           | INTC | MRK  | PG   |
|           | XOM  | WMT  |     |      | Cluster 2 | C    | XOM  | WMT  |
| Cluster 2 | JPM  | MSFT | AXP | JNJ  |           | MSFT | AXP  | JNJ  |
|           | DD   | HON  | CVX | DIS  | Cluster 3 | HON  | CVX  | DIS  |
|           | UTX  | MCD  |     |      |           | MCD  | HD   | CAT  |
| Cluster 3 | HD   | CAT  | IBM | AAPL | Cluster 4 | IBM  | AAPL | AMGN |
|           | AMGN | FB   | BA  | BIIB |           | BA   | BIIB |      |

Tables 7 and 8 show the results of using the *k*-means++ algorithm to cluster the stocks listed in Table 6 according to  $\hat{\sigma}$ , but with Amazon and Google removed. This time around, no single stock constitutes its own cluster.

Table 9 shows both the Rand and adjusted Rand index values for comparing bounded area clusters with arc length clusters, bounded area clusters with  $\hat{\sigma}$  clusters, and arc length clusters with  $\hat{\sigma}$  clusters. Amazon and Google are not present and so N = 28.

To the degree that the Rand index is reliable, then all three measures of volatility are cohesive and become more so as the number of clusters increases. To the degree that the adjusted Rand index is reliable, then that cohesion subsides significantly. The authors put more stock in the former (unadjusted)

| Cluster 1 | GE<br>INTC | КО   | BP  | VZ  |
|-----------|------------|------|-----|-----|
| luster 2  | MRK        | PG   | С   | XOM |
|           | WMT        |      |     |     |
| Cluster 3 | JPM        | MSFT | AXP | JNJ |
|           | DD         | HON  |     |     |
| Cluster 4 | CVX        | DIS  | UTX | MCD |
|           | HD         | CAT  | IBM |     |
| Cluster 5 | AAPL       | AMGN | FB  | BA  |
|           | BIIB       |      |     |     |

**Table 8.** Five (left) and six (right) clusters using  $\hat{\sigma}$ .

Table 9. Rand (left) and adjusted Rand (right) index values for comparing bounded area (BA) clusters with arc length (AL) clusters, bounded area clusters with  $\hat{\sigma}$  clusters, and arc length clusters with  $\hat{\sigma}$ clusters.

|            | BA and AL | BA and $\widehat{\sigma}$ | AL and $\widehat{\sigma}$ |            | BA and AL | BA and $\widehat{\sigma}$ | AL a  |
|------------|-----------|---------------------------|---------------------------|------------|-----------|---------------------------|-------|
| 3 clusters | 0.5714286 | 0.6375661                 | 0.3835979                 | 3 clusters | 0.1681926 | 0.2634199                 | 0.029 |
| 4 clusters | 0.6825397 | 0.6137566                 | 0.5820106                 | 4 clusters | 0.3773507 | 0.1140151                 | 0.201 |
| 5 clusters | 0.6904762 | 0.7195767                 | 0.7962963                 | 5 clusters | 0.2076749 | 0.1749444                 | 0.426 |
| 6 clusters | 0.7142857 | 0.7619048                 | 0.8095238                 | 6 clusters | 0.1843683 | 0.1480517                 | 0.407 |

index since the k-means++ algorithm should not need the same "correctingfor-chance" as the original *k*-means algorithm.

# 5. Triangular information versus rectangular information

(Note: For this section of the paper, the word "area" is always meant to refer to a positive measure of two-dimensional space. It should also be clear that all time series discussed will be discrete and not continuous.)

It is a simple matter of geometry that if one knows the lengths of both the hypotenuse and one leg of a right triangle, then one also knows the area of that triangle. It then follows that if one knows the lengths of the line segments connecting adjacent points in  $\mathbb{R}^2$  from the set

$$\{(k, y_k), (k+1, y_{k+1}), (k+2, y_{k+2}), \dots, (k+r, y_{k+r})\},\$$

then one also knows the areas of the r right triangles whose hypotenuses are these segments. The specific instance with r = 7 is illustrated in Fig. 4.

It is also a geometric fact that if a line segment of known length in  $\mathbb{R}^2$  crosses the abscissa, then one can obtain the areas of the two right triangles that appear above and below that abscissa. Specifically, if the endpoints of the line segment have coordinates  $(\alpha, \beta)$  and  $(\delta, \epsilon)$ , then it can be shown that those areas are

$$\frac{\beta^2}{2} \left| \frac{\alpha - \delta}{\epsilon - \beta} \right| \quad \text{and} \quad \frac{\epsilon^2}{2} \left| \frac{\alpha - \delta}{\epsilon - \beta} \right|$$

See Fig. 5.

Putting all of these geometric facts together, it then follows that if one knows the arc length of a mean-zero time series  $\{X_t\}$  sampled from t = 1 to t = n,



**Figure 4.** Seven line segments that serve as hypotenuses for seven right triangles. Knowledge of the lengths of these segments implies knowledge of the areas of the triangles.



**Figure 5.** If a line segment of known length in  $\mathbb{R}^2$  crosses the abscissa, then one can obtain the areas of the two right triangles that appear above and below that abscissa.

then one also knows the areas of all the right triangles that are created by the n-1 individual arc length segments. For arc length segments that lie completely above or below the time axis, let  $T_i$  denote the area of the right triangle whose hypotenuse connects points  $(i, X_i)$  and  $(i+1, X_{i+1})$ . For arc length segments that cross the time axis, let  $T_{i,u}$  and  $T_{i,l}$  denote the areas of the upper and lower right triangles, respectively, that correspond to that segment. In this case, we simply define  $T_i = T_{i,u} + T_{i,l}$ . See Fig. 6.

Henceforward, we will use the term *triangular information* to stand for the total area of all the right triangles that the arc length segments for a mean-zero time series sampled from t = 1 to t = n create. That is,

triangular information = 
$$\sum_{i=1}^{n-1} T_i$$
.

Thus, the arc length of a sampled mean-zero time series imparts triangular information about that series.

We now compare and contrast triangular information with what will henceforward be referred to as *rectangular information*. For arc length segments that lie completely above or below the time axis, let  $R_i$  denote the area of the rectangle



**Figure 6.** Arc length segments and their corresponding right triangles for a portion of an arbitrary mean-zero time series, where  $T_{k+3} = T_{k+3,u} + T_{k+3,l}$ .

that lies above or below the triangle whose hypotenuse connects points  $(i, X_i)$  and  $(i + 1, X_{i+1})$ . Since there are no rectangles in the vertical band created by arc length segments that cross the time axis, we simply let  $R_i = 0$  in this case. Now we put forward a definition analogous to triangular information:

rectangular information 
$$= \sum_{i=1}^{n-1} R_i$$
.

See Fig. 7.

The upshot of this whole discussion is to make the following observation:

bounded area = triangular information + rectangular information .

Specifically, if a mean-zero time series is sampled from t = 1 to t = n, then

bounded area = 
$$\sum_{i=1}^{n-1} (T_i + R_i)$$
.

Thus, the geometric information imparted by arc length is merely a subset of that imparted by bounded area. This is not to say, however, that arc length information can be recovered from bounded area information.

If future studies reveal either bounded area or arc length to truly be "better" than the other when measuring volatility, then that edge must be directly



**Figure 7.** Triangular and rectangular information for a portion of an arbitrary mean-zero time series, where  $T_{k+3} = T_{k+3,u} + T_{k+3,l}$  and  $R_{k+3} = 0$ .

connected to the presence or absence of rectangular information. Which of the two it might be is a subject for further consideration.

Another future pursuit will be to see if bounded area and arc length are meaningful surrogates for the conditional volatility associated with a GARCH process. To get a feel for how this task will be executed, recall that if  $\{\epsilon_t\}$  is a GARCH process and if  $\mathcal{E}_t$  is an information set based on events up to time *t*, then  $\operatorname{Var}(\epsilon_t \mid \mathcal{E}_{t-1}) = \sigma_t^2$  is the conditional volatility associated with  $\epsilon_t$ . It can also be shown that  $\operatorname{Cov}(\epsilon_t^2, \epsilon_{t+h}^2) = \operatorname{Cov}(\sigma_t^2, \sigma_{t+h}^2)$ .

Now let  $\{\epsilon_{t,A}\}$  and  $\{\epsilon_{t,B}\}$  be independent, stationary GARCH processes with conditional volatility processes  $\{\sigma_{t,A}^2\}$  and  $\{\sigma_{t,B}^2\}$ , respectively. If we define  $X_t := \epsilon_{t,A}^2$  and  $Y_t := \epsilon_{t,B}^2$ , then comparing the dynamics between  $\{\sigma_{t,A}^2\}$  and  $\{\sigma_{t,B}^2\}$  is equivalent to testing

$$H_0: \gamma_X(h) = \gamma_Y(h) \text{ for all } h \text{ vs.}$$
  
$$H_1: \gamma_X(h) \neq \gamma_Y(h) \text{ for at least one } h$$

where either bounded area or arc length will be the test statistic pivot.

# Acknowledgments

The authors wish to give special thanks to Dr. Gauri Guha for his assistance with this project.

# References

Arthur, D., and S. Vassilvitskii. 2007. "k-means++: The Advantages of Careful Seeding." Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 1027–1035.

Hubert, L. J., and P. Arabie. 1985. "Comparing Partitions." Journal of Classification 2:193-218.

- Liao, T. W. 2005. "Clustering of Time Series Data A Survey." Pattern Recognition 38:1857-1874.
- MacQueen, J. 1967. "Some Methods for Classification and Analysis of Multivariate Observations." *Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability* 1:281–297.
- Ostrovsky, R., Y. Rabani, L. J. Schulman, and C. Swamy. 2012. "The Effectiveness of Lloyd-Type Methods for the k-means Problem." *Journal of the ACM* 59:28.
- Poon, S., and C. W. J. Granger. 2003. "Forecasting Volatility in Financial Markets: A Review." Journal of Economic Literature 41:478–539.
- Rand, W. M. 1971. "Objective Criteria for the Evaluation of Clustering Methods." *Journal of the American Statistical Association* 66:846–850.
- Tunno, F. 2015. "Bounded Area Tests for Comparing the Dynamics Between ARMA Processes." *Communications in Statistics: Theory and Methods* 44:3921–3941.
- Tunno, F., C. Gallagher, and R. Lund. 2012. "Arc Length Tests for Equivalent Autocovariances." Journal of Statistical Computation and Simulation 82:1799–1812.
- Tunno, F., and M. Perry. 2022. "Signal Discrimination Without Denoising." *Communications in Statistics: Simulation and Computation* 51:626–646.
- Wickramarachchi, T., and F. Tunno. 2015. "Using Arc Length to Cluster Financial Time Series According to Risk." *Communications in Statistics: Case Studies, Data Analysis, and Applications* 1:217–225.