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ABSTRACT
This article presents a new way to measure the volatility of finan-
cial time series, which is shown to be on a par with arc length
for such endeavors. An application involving the clustering of 30
prominent stocks is presented as well.
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1. Introduction

This article puts forward “bounded area” as a valid measure of volatility for
financial time series. The next section defines that term as well as its “arc length”
counterpart. It then goes on to give a history of the two concepts in the academic
literature. Section 3 outlines the k-means++ clustering algorithm as well as the
details behind the Rand index. Both are then used in Section 4 to cluster and
analyze a collection of 30 prominent stocks via bounded area, arc length, and
the standard deviation of returns. Finally, Section 5 puts forward a geometric
hypothesis.

2. Bounded Area and Arc Length

Observe the scatterplot of an arbitrary mean-zero process shown in Fig. 1.
Typically, one “connects the dots” for better presentation as shown in Fig. 2. The
sum of the lengths of these line segments is called the arc length. The shaded
region between these line segments and the time axis shown in Fig. 3 is called
the bounded area.

If {Xt} is a mean-zero time series observed at times t = 1, 2, . . . , n, then the
magnitude of its bounded area is equal to

n∑
t=2

[ ∫ t

t−1

∣∣∣(Xt − Xt−1)(u − t) + Xt

∣∣∣ du
]

, (1)
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Figure 1. A scatterplot of an arbitrary mean-zero time series.

Figure 2. The same scatterplot from Figure 1, but with line segments connecting adjacent points.
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Figure 3. The region between the line segments and the time axis from Figure 2.

while its arc length is equal to
n∑

t=2

√
1 + (Xt − Xt−1)2 . (2)

Note that the mean-zero assumption is necessary for (1), but unnecessary for
(2). That is, if we define a new process {Yt} such that Yt = Xt + k with k �= 0,
then the arc length calculations for {Xt} and {Yt} over t = 1, 2, . . . , n will be
the same, while the bounded area calculations will be different and only correct
for {Xt}.

Tunno (2015) showed that if two independent, stationary, mean-zero ARMA
processes with finite second moments are observed over the same period, then
a significant difference between their bounded area magnitudes implies a sig-
nificant difference between their autocovariance structures. Tunno, Gallagher,
and Lund (2012) showed that if two independent, stationary ARMA processes
with finite fourth moments are observed over the same period, then a significant
difference between their arc lengths implies a significant difference between
their autocovariance structures.

Tunno and Perry (2022) showed that if two independent, mean-zero signal-
plus-noise processes are observed over the same period, then a significant dif-
ference between their bounded area magnitudes implies a significant difference
between their underlying structures. They also showed the same to be true for
arc length, but revealed that bounded area is a better discriminant between such
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signals. Tunno (2015) also demonstrated that bounded area distinguishes more
accurately than arc length.

Wickramarachchi and Tunno (2015) showed that arc length is a suitable
measure of volatility for financial time series and can be used to sort such
series into meaningful clusters. In Section 4, the authors will make the case that
bounded area is also a credible measure of volatility when clustering financial
time series.

3. k-means++ algorithm and the Rand index

There are a wide variety of ways to cluster time series data. For a nice survey
of all such techniques, see Liao (2005). In this section, the particular clustering
algorithm known as k-means++ is explained.

The original k-means algorithm for partitioning a numerical data set into
k disjoint subsets/clusters was first created by MacQueen (1967) and goes as
follows:

1. Choose the number of clusters k for your set S.
2. Randomly partition S into k clusters and determine their centers (averages)

or directly generate k random points as cluster centers.
3. Assign each member from S to the nearest cluster, using some pre-chosen

distance norm.
4. Recompute the new cluster centers.
5. Repeat steps 3 and 4 until things stabilize.

The k-means++ algorithm, proposed independently by Ostrovsky et al.
(2012) and Arthur and Vassilvitskii (2007), improves upon the regular k-means
algorithm by more carefully selecting the initial centers. k-means++ greatly
reduces the possibility of suboptimal clustering by substituting the following
algorithm in for the initial random partitioning of data points:

1. Choose one center uniformly at random from among the data points.
2. For each data point x, compute the distance D(x) between x and the nearest

center that has already been chosen.
3. Add one new data point at random as a new center, using a weighted

probability distribution where point x is chosen with probability proportional
to (D(x))2.

4. Repeat steps 2 and 3 until k distinct centers have been chosen.

Now consider a set of elements S = {O1, O2, . . . , ON} with partitions X =
{x1, x2, . . . , xk} and Y = {y1, y2, . . . , yk}. Next, define the following:

a = the number of pairs of elements in S that are in the same clusters
of X and also the same clusters of Y



COMMUNICATIONS IN STATISTICS: CASE STUDIES, DATA ANALYSIS AND APPLICATIONS 5

b = the number of pairs of elements in S that are in different clusters
of X and also different clusters of Y

c = the number of pairs of elements in S that are in the same clusters
of X but different clusters of Y

d = the number of pairs of elements in S that are in different clusters
of X but the same clusters of Y

We then calculate the Rand index as follows:
a + b

a + b + c + d
= a + b(N

2
) = 2(a + b)

N(N − 1)
.

This index is a number between 0 and 1 and gives the proportion of time that X
and Y cluster S in the same manner. See Rand (1971) for further details.

Now consider the following contingency table, where nij stands for the
number of elements from S that are contained in both xi and yj:

y1 y2 · · · yk
x1 n11 n12 · · · n1k a1
x2 n21 n22 · · · n2k a2
...

...
... . . . ...

...
xk nk1 nk2 · · · nkk ak

b1 b2 · · · bk N
We then calculate the adjusted Rand index as follows:∑k

i=1
∑k

j=1
(nij

2
) −

[∑k
i=1

(ai
2
)∑k

j=1
(bj

2
)]/(N

2
)

1
2

[∑k
i=1

(ai
2
) + ∑k

j=1
(bj

2
)] −

[∑k
i=1

(ai
2
)∑k

j=1
(bj

2
)]/(N

2
) .

This index is a “corrected-for-chance” version of the Rand Index and is also a
number bounded above by 1, but has the potential to be negative. See Hubert
and Arabie (1985) for further details.

4. Application

Table 1 below lists 30 stocks that the authors believe currently provide a reason-
able representation of consequential American market activity. Also included
are their bounded area and arc length values using adjusted closing prices from
January 2013 to December 2019 (n = 1,762). In this section, these stocks will
be clustered via the k-means++ algorithm1 using bounded area and arc length
as surrogates for volatility.

1https://toolslick.com/programming/ml/kmeans

https://toolslick.com/programming/ml/kmeans
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Table 1. Thirty stocks along with their bounded area and arc length values using adjusted closing
prices from January 2013 to December 2019.
Ticker Stock Bounded area Arc length

GOOG Alphabet, Inc. 420794.1 14341.55
AMZN Amazon 879981.8 19415.68
AXP American Express 26650.25 2328.659
AMGN Amgen, Inc. 50385.62 3478.884
AAPL Apple 78329.77 3303.17
BIIB Biogen 72078.95 7925.215
BA Boeing 168208.1 4690.726
BP British Petroleum 7968.605 1894.525
CAT Caterpillar 45777.15 2833.432
CVX Chevron 19945.89 2534.194
C Citigroup 16718.25 2158.694
KO Coca Cola 8546.052 1859.205
DD DuPont 22072.23 2418.913
XOM Exxon Mobil 6336.809 2167.457
FB Facebook 81377.65 3400.563
GE General Electric 8830.629 1814.721
HD Home Depot 74493.22 2837.987
HON Honeywell International 51124.86 2485.025
INTC Intel 16137.09 1978.727
IBM International Business Machine 16601.37 2901.64
JNJ Johnson & Johnson 35178.64 2345.988
JPM J.P. Morgan Chase 42356.54 2279.517
MCD McDonald’s 65531.2 2541.402
MRK Merck 18004.95 2048.75
MSFT Microsoft 51480.39 2286.635
PG Proctor & Gamble 19546.61 2117.501
UTX United Technologies 24954.44 2509.084
VZ Verizon 10056.64 1919.712
WMT Wal-Mart 24149.18 2164.447
DIS Walt Disney 29905.43 2458.388

Table 2. Three clusters using bounded area (left) and arc length (right).

Cluster 1 XOM BP KO GE
VZ INTC IBM C

MRK PG CVX DD
WMT UTX AXP DIS
JNJ

Cluster 2 JPM CAT AMGN HON
MSFT MCD BIIB HD
AAPL FB

Cluster 3 BA

Cluster 1 GE KO BP VZ
INTC MRK PG C
WMT XOM JPM MSFT
AXP JNJ DD DIS
HON UTX CVX MCD
CAT HD IBM AAPL
FB AMGN

Cluster 2 BA
Cluster 3 BIIB

Although not shown here, initial efforts to use the k-means++ algorithm to
cluster the stocks in Table 1 according to their bounded area and arc length
values always resulted in Google and Amazon constituting their own (upper)
clusters. So as not to let these two “outlier” stocks obscure further partitioning
among the other 28 stocks that might be meaningful, they will henceforward
not be considered.

Tables 2–5 show the results of using the k-means++ algorithm to cluster the
stocks listed in Table 1 according to their bounded area and arc length values,
but now with Amazon and Google removed. This time around, Boeing is always
its own cluster.
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Table 3. Four clusters using bounded area (left) and arc length (right).

Cluster 1 XOM BP KO GE
VZ INTC IBM C

MRK PG CVX DD
WMT UTX AXP DIS

Cluster 2 JNJ JPM CAT AMGN
HON MSFT

Cluster 3 MCD BIIB HD AAPL
FB

Cluster 4 BA

Cluster 1 GE KO BP VZ
INTC MRK PG C
WMT XOM JPM MSFT
AXP JNJ DD DIS
HON UTX CVX MCD

Cluster 2 CAT HD IBM AAPL
FB AMGN

Cluster 3 BA
Cluster 4 BIIB

Table 4. Five clusters using bounded area (left) and arc length (right).

Cluster 1 XOM BP KO GE
VZ

Cluster 2 INTC IBM C MRK
PG CVX DD WMT

UTX AXP DIS JNJ
Cluster 3 JPM CAT AMGN HON

MSFT
Cluster 4 MCD BIIB HD AAPL

FB
Cluster 5 BA

Cluster 1 GE KO BP VZ
INTC MRK PG C
WMT XOM

Cluster 2 JPM MSFT AXP JNJ
DD DIS HON UTX
CVX MCD

Cluster 3 CAT HD IBM AAPL
FB AMGN

Cluster 4 BA
Cluster 5 BIIB

Table 5. Six clusters using bounded area (left) and arc length (right).

Cluster 1 XOM BP KO GE
VZ

Cluster 2 INTC IBM C MRK
PG CVX DD WMT

UTX AXP
Cluster 3 DIS JNJ JPM
Cluster 4 CAT AMGN HON MSFT
Cluster 5 MCD BIIB HD AAPL

FB
Cluster 6 BA

Cluster 1 GE KO BP VZ
INTC MRK PG C
WMT XOM

Cluster 2 JPM MSFT AXP JNJ
DD DIS HON UTX
CVX MCD

Cluster 3 CAT HD IBM
Cluster 4 AAPL FB AMGN
Cluster 5 BA
Cluster 6 BIIB

For perspective, Table 6 shows the standard deviation of returns for all 30
stocks during the period January 2013 through December 2019. Specifically, if
{Xt} is a time series observed at times t = 1, 2, . . . , n with Dt := Xt − Xt−1 for
t = 2, 3, . . . , n, then that standard deviation takes the form

σ̂ =
√√√√ 1

n − 2

n∑
t=2

(Dt −D)2 ,

where

D = 1
n − 1

n∑
t=2

Dt .

This is a common measure of the volatility of a stock. For a nice review of
volatility in general, see Poon and Granger (2003).
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Table 6. Thirty stocks along with the standard deviation of their returns using adjusted closing prices
from January 2013 to December 2019.
Ticker Stock Std. Dev. of Returns

GOOG Alphabet, Inc. 12.34592
AMZN Amazon 18.73062
AXP American Express 1.026904
AMGN Amgen, Inc. 2.158978
AAPL Apple 2.121515
BIIB Biogen 6.899412
BA Boeing 3.774907
BP British Petroleum 0.4198629
CAT Caterpillar 1.617281
CVX Chevron 1.217688
C Citigroup 0.7903046
KO Coca Cola 0.364998
DD DuPont 1.1292
XOM Exxon Mobil 0.802288
FB Facebook 2.373291
GE General Electric 0.2585365
HD Home Depot 1.608202
HON Honeywell International 1.203946
INTC Intel 0.587934
IBM International Business Machine 1.66925
JNJ Johnson & Johnson 1.087777
JPM J.P. Morgan Chase 0.9626558
MCD McDonald’s 1.321727
MRK Merck 0.6708082
MSFT Microsoft 1.023353
PG Proctor & Gamble 0.7695518
UTX United Technologies 1.219441
VZ Verizon 0.4645543
WMT Wal-Mart 0.8837024
DIS Walt Disney 1.218841

Table 7. Three (left) and four (right) clusters using σ̂ .

Cluster 1 GE KO BP VZ
INTC MRK PG C
XOM WMT

Cluster 2 JPM MSFT AXP JNJ
DD HON CVX DIS
UTX MCD

Cluster 3 HD CAT IBM AAPL
AMGN FB BA BIIB

Cluster 1 GE KO BP VZ
INTC MRK PG

Cluster 2 C XOM WMT JPM
MSFT AXP JNJ DD

Cluster 3 HON CVX DIS UTX
MCD HD CAT

Cluster 4 IBM AAPL AMGN FB
BA BIIB

Tables 7 and 8 show the results of using the k-means++ algorithm to cluster
the stocks listed in Table 6 according to σ̂ , but with Amazon and Google
removed. This time around, no single stock constitutes its own cluster.

Table 9 shows both the Rand and adjusted Rand index values for comparing
bounded area clusters with arc length clusters, bounded area clusters with σ̂

clusters, and arc length clusters with σ̂ clusters. Amazon and Google are not
present and so N = 28.

To the degree that the Rand index is reliable, then all three measures of
volatility are cohesive and become more so as the number of clusters increases.
To the degree that the adjusted Rand index is reliable, then that cohesion
subsides significantly. The authors put more stock in the former (unadjusted)
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Table 8. Five (left) and six (right) clusters using σ̂ .

Cluster 1 GE KO BP VZ
INTC

Cluster 2 MRK PG C XOM
WMT

Cluster 3 JPM MSFT AXP JNJ
DD HON

Cluster 4 CVX DIS UTX MCD
HD CAT IBM

Cluster 5 AAPL AMGN FB BA
BIIB

Cluster 1 GE KO BP VZ
INTC

Cluster 2 MRK PG C XOM
Cluster 3 WMT JPM MSFT AXP

JNJ
Cluster 4 DD HON CVX DIS

UTX
Cluster 5 MCD HD CAT IBM
Cluster 6 AAPL AMGN FB BA

BIIB

Table 9. Rand (left) and adjusted Rand (right) index values for comparing bounded area (BA) clusters
with arc length (AL) clusters, bounded area clusters with σ̂ clusters, and arc length clusters with σ̂

clusters.

BA and AL BA and σ̂ AL and σ̂

3 clusters 0.5714286 0.6375661 0.3835979
4 clusters 0.6825397 0.6137566 0.5820106
5 clusters 0.6904762 0.7195767 0.7962963
6 clusters 0.7142857 0.7619048 0.8095238

BA and AL BA and σ̂ AL and σ̂

3 clusters 0.1681926 0.2634199 0.0295304
4 clusters 0.3773507 0.1140151 0.2012304
5 clusters 0.2076749 0.1749444 0.4267990
6 clusters 0.1843683 0.1480517 0.4078329

index since the k-means++ algorithm should not need the same “correcting-
for-chance” as the original k-means algorithm.

5. Triangular information versus rectangular information

(Note: For this section of the paper, the word “area” is always meant to refer to
a positive measure of two-dimensional space. It should also be clear that all time
series discussed will be discrete and not continuous.)

It is a simple matter of geometry that if one knows the lengths of both the
hypotenuse and one leg of a right triangle, then one also knows the area of
that triangle. It then follows that if one knows the lengths of the line segments
connecting adjacent points in R

2 from the set

{(k, yk), (k + 1, yk+1), (k + 2, yk+2), . . . , (k + r, yk+r)} ,

then one also knows the areas of the r right triangles whose hypotenuses are
these segments. The specific instance with r = 7 is illustrated in Fig. 4.

It is also a geometric fact that if a line segment of known length in R
2 crosses

the abscissa, then one can obtain the areas of the two right triangles that appear
above and below that abscissa. Specifically, if the endpoints of the line segment
have coordinates (α, β) and (δ, ε), then it can be shown that those areas are

β2

2

∣∣∣∣α − δ

ε − β

∣∣∣∣ and
ε2

2

∣∣∣∣α − δ

ε − β

∣∣∣∣ .

See Fig. 5.
Putting all of these geometric facts together, it then follows that if one knows

the arc length of a mean-zero time series {Xt} sampled from t = 1 to t = n,
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Figure 4. Seven line segments that serve as hypotenuses for seven right triangles. Knowledge of the
lengths of these segments implies knowledge of the areas of the triangles.

Figure 5. If a line segment of known length inR
2 crosses the abscissa, then one can obtain the areas

of the two right triangles that appear above and below that abscissa.

then one also knows the areas of all the right triangles that are created by the
n−1 individual arc length segments. For arc length segments that lie completely
above or below the time axis, let Ti denote the area of the right triangle whose
hypotenuse connects points (i, Xi) and (i+1, Xi+1). For arc length segments that
cross the time axis, let Ti,u and Ti,l denote the areas of the upper and lower right
triangles, respectively, that correspond to that segment. In this case, we simply
define Ti = Ti,u + Ti,l. See Fig. 6.

Henceforward, we will use the term triangular information to stand for the
total area of all the right triangles that the arc length segments for a mean-zero
time series sampled from t = 1 to t = n create. That is,

triangular information =
n−1∑
i=1

Ti .

Thus, the arc length of a sampled mean-zero time series imparts triangular
information about that series.

We now compare and contrast triangular information with what will hence-
forward be referred to as rectangular information. For arc length segments that
lie completely above or below the time axis, let Ri denote the area of the rectangle
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Figure 6. Arc length segments and their corresponding right triangles for a portion of an arbitrary
mean-zero time series, where Tk+3 = Tk+3,u + Tk+3,l .

that lies above or below the triangle whose hypotenuse connects points (i, Xi)
and (i + 1, Xi+1). Since there are no rectangles in the vertical band created by
arc length segments that cross the time axis, we simply let Ri = 0 in this case.
Now we put forward a definition analogous to triangular information:

rectangular information =
n−1∑
i=1

Ri .

See Fig. 7.
The upshot of this whole discussion is to make the following observation:

bounded area = triangular information + rectangular information .

Specifically, if a mean-zero time series is sampled from t = 1 to t = n, then

bounded area =
n−1∑
i=1

(Ti + Ri) .

Thus, the geometric information imparted by arc length is merely a subset of
that imparted by bounded area. This is not to say, however, that arc length
information can be recovered from bounded area information.

If future studies reveal either bounded area or arc length to truly be “better”
than the other when measuring volatility, then that edge must be directly
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Figure 7. Triangular and rectangular information for a portion of an arbitrary mean-zero time series,
where Tk+3 = Tk+3,u + Tk+3,l and Rk+3 = 0.

connected to the presence or absence of rectangular information. Which of the
two it might be is a subject for further consideration.

Another future pursuit will be to see if bounded area and arc length are
meaningful surrogates for the conditional volatility associated with a GARCH
process. To get a feel for how this task will be executed, recall that if {εt} is a
GARCH process and if Et is an information set based on events up to time t,
then Var(εt | Et−1) = σ 2

t is the conditional volatility associated with εt. It can
also be shown that Cov(ε2

t , ε2
t+h) = Cov(σ 2

t , σ 2
t+h).

Now let {εt,A} and {εt,B} be independent, stationary GARCH processes with
conditional volatility processes {σ 2

t,A} and {σ 2
t,B}, respectively. If we define Xt :=

ε2
t,A and Yt := ε2

t,B, then comparing the dynamics between {σ 2
t,A} and {σ 2

t,B} is
equivalent to testing

H0 : γX(h) = γY(h) for all h vs.
H1 : γX(h) �= γY(h) for at least one h ,

where either bounded area or arc length will be the test statistic pivot.
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