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ABSTRACT
This article investigates how arc length can be used to partition financial time series according to
variability (risk). This technique is predicated on the idea that arc length is an index of volatility, and
thus the end result is that safer stocks can be sorted frommore risky ones. Performance of arc length
is compared with squared returns and absolute returns, two commonly used measures for quantify-
ing the variability of prices. An application involving 30 popular stocks is presented using Maharaj,
k-means ++, and correlation-based clustering techniques.

1. Introduction

In finance, there has always been an interest in find-
ing meaningful ways to cluster stocks. One approach is
to partition a collection into subsets according to their
volatility in order to sort the safer stocks from themore
risky ones. This article explores a new way to imple-
ment such clustering by utilizing the measure of arc
length.

In general, if {Xt} is a time series observed at times
t = 1, 2, . . . , n, then the sample arc length of this series
is the sum of the lengths of the line segments connect-
ing the adjacent sample points (t,Xt )

n
t=1:

n∑
t=2

√
1 + (Xt − Xt−1)2. (1)

Similarly, if {Pt} is a stock price series with corre-
sponding log price series {lnPt} observed at times t =
1, 2, . . . , n, then the sample arc length of the log price
series is the sumof the lengths of the line segments con-
necting the adjacent sample points (t, ln Pt )nt=1:

n∑
t=2

√
1 + (ln Pt − ln Pt−1)2.

It is common practice in finance to look at log prices, as
opposed to raw prices, for mathematical convenience.

CONTACT Tharanga Wickramarachchi twickramarachchi@georgiasouthern.edu Department of Mathematical Sciences, Georgia Southern University, P.O.
Box , Statesboro, GA , USA.

Observe that the log return

Yt = ln Pt − ln Pt−1 = ln
(
1 + Pt − Pt−1

Pt−1

)

can often be approximated by (Pt − Pt−1)/Pt−1, which
is the percent change in price at time t , since ln(1 +
x) ≈ x for small x. Returns in general exhibit com-
monly occurring properties associated with volatil-
ity, such as leptokurtosis and persistence.1 Returns are
leptokurtic because their densities tend to have fatter
tails than a normal density and are persistent because
returns of large/small magnitude tend to be followed
by more returns of large/small magnitude. These prop-
erties are typically referred to as “stylized facts” and
are pervasive in the literature (see Chap. 4 of Taylor
(2005)).

Figure 1 shows the log returns of Coca-Cola, John-
son & Johnson, Proctor & Gamble, Alcoa, Eastman
Kodak, and Google which correspond to the daily
closing prices recorded from January 2005 through
December 2007. The picture clearly reveals that the
top three series are much less volatile than the bot-
tom three. This article will show that arc length can
distinguish between stocks of differing volatility when
that difference cannot be discerned upon inspection
alone. As a result, investors can make their deci-
sions wisely so that the risk they have to bear is
low.
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Figure . Log returns (clockwise starting at top left): Coca-cola, Johnson & Johnson, Proctor & Gamble, Google, Eastman Kodak, and Alcoa.

Tunno et al. (2012) showed that a standardized arc
length test statistic can be used to test for equivalent
autocovariances between two independent stationary
series. That is, a significant difference in sample arc
lengths implies a significant difference in autocovari-
ance structures. If one series has a larger variance, then
it should vary more in time and its arc length should
be bigger. It was also shown that both arc length and
squared differences behave the same when testing for
equivalent autocovariances. That is,

n∑
t=2

(Xt − Xt−1)
2

can be used as a surrogate for Eq. (1) with no effect on
the test.

Wickramarachchi et al. (2015), however, have shown
that arc length can be used to quantify volatility and
in fact outperforms squared returns in this capacity.
They prove the functional central limit theorem for arc
length under finite second-moment conditions. This
was motivated by the fact that most financial time
series have finite second moments, but infinite fourth
moments, and squared returns require a finite fourth
moment for a functional central limit theorem to hold.

It follows from Thm. 2.3 of Wickramarachchi et al.
(2015) that the difference between two sample arc
lengths has an asymptotic normal distribution. The
complete corollary is given below:

Corollary 1.1. Let {Xt} = (X1,t ,X2,t )
T and {Yt} =

(Y1,t ,Y2,t )T be bivariate time series such that {Yt} is
stationary with Yt = Xt − Xt−1 and E(‖Yt‖2) < ∞,
where ‖ · ‖ is the usual Euclidean norm. Suppose fur-
ther that {Yt} has component-wiseφ-mixing innovations
{Zt} with

∞∑
m=0

√
E

∣∣∣∣Y 2
i,t −

(
Y (m)
i,t

)2
∣∣∣∣ < ∞ i = 1, 2

where Y(m)
t = g(Zt ,Zt−1, . . . ,Zt−m, 0, 0, . . .) for some

function g. Then, we have

S(1)
n − S(2)

n
D→ N(0, τ 2),

where τ 2 = Var(ηt ) + 2
∑∞

k=1 Cov(η0, ηk), ηt =√
1+Y 2

1,t−
√

1+Y 2
2,t ,

S(i)
n = n−1/2 ∑

1≤t≤n(ζi,t − E(ζi,0)), and ζi,t =√
1+Y 2

i,t for i = 1, 2.



COMMUNICATIONS IN STATISTICS: CASE STUDIES, DATA ANALYSIS AND APPLICATIONS 219

This result can be used to compare two series sta-
tistically in terms of volatility using arc length as the
measure. Whichever measure is used, volatility is usu-
ally non-constant and could even be a random variable
(see Chap. 10 of Dineen (2013)). Certainly, this is the
case with a process following, for example, an ARCH
or stochastic volatility model.

In this article, we indeed use arc length as the spe-
cific measure of volatility to accomplish the goal of
clustering stocks according to risk. This approach is
an example of what is called feature-based time series
clustering (see Liao (2005)), whereby some feature is
extracted from the raw data and used in lieu of the
data itself. The next section discusses the details of
how to use a number of such clustering algorithms,
including the Maharaj algorithm which can be driven
by a hypothesis test based on Cor. 1.1 to discrim-
inate between two time series. Sec. 3 presents an
application along with a comparison of performance
between arc length and both squared returns and abso-
lute returns, and Sec. 4 closes the article with some
remarks.

2. Clustering algorithms

There are a wide variety of ways to cluster time series
data. For an excellent survey of all such techniques,
see Liao (2005). In this section, we describe three spe-
cific clustering algorithms that will later be used in con-
junction with arc length, squared returns, and abso-
lute returns to quantify volatility among a collection of
stocks.

2.1. Maharaj algorithm

Maharaj (2000) proposes a hierarchical clustering algo-
rithm based on the p-value of a hypothesis test that
assesses whether or not two time series are generated
by the same process. According to the algorithm, two
time series will go in the same cluster only if the cor-
responding p-value is greater than a pre-determined
level of significance α. More precisely, a new time series
will be placed in a given cluster Ck only if all pairwise
p-values obtained from tests between the series of inter-
est and the other series in Ck are greater than the
selected α. In the next section, we will apply this algo-
rithm using p-values obtained from a hypothesis test
based upon the natural dissimilarity measure that fol-
lows from Cor. 1.1.

2.2. k-means++ algorithm

The original k-means algorithm for partitioning a
numerical data set into k disjoint subsets/clusters was
first created byMacQueen (1967) and goes as follows:

1. Choose the number of clusters k for your set S.
2. Randomly partition S into k clusters and deter-

mine their centers (averages) or directly gener-
ate k random points as cluster centers.

3. Assign each member from S to the nearest clus-
ter, using some pre-chosen distance norm.

4. Recompute the new cluster centers.
5. Repeat Steps 3 and 4 until things stabilize.
The k-means++ algorithm, proposed independently

by Ostrovsky et al. (2012) and Arthur and Vassilvit-
skii (2007), improves upon the regular k-means algo-
rithm by more carefully selecting the initial centers.
k-means++ greatly reduces the possibility of subopti-
mal clustering by substituting the following algorithm
in for initial random partition of data points:

1. Choose one center uniformly at random from
among the data points.

2. For each data point x, compute the distance
D(x) between x and the nearest center that has
already been chosen.

3. Add one new data point at random as a new cen-
ter, using a weighted probability distribution,
where point x is chosenwith probability propor-
tional to (D(x))2.

4. Repeat Steps 2 and 3 until k distinct centers have
been chosen.

2.3. Correlation algorithm

The third clustering technique we consider is a
simple hierarchical clustering algorithm that uses a
correlation-based distance as the dissimilarity mea-
sure. Specifically, this is Pearson’s correlation coefficient
between two time series {Ut} and {Vt} given by

ρUV =
∑n

t=1
(
Ut −U

) (
Vt −V

)
√∑n

t=1
(
Ut −U

)2√∑n
t=1

(
Vt −V

)2 ,

whereU = n−1 ∑n
t=1Ut andV = n−1 ∑n

t=1Vt .
Golay et al. (1998) propose a cross-correlation-

based distance given by dCOR (Ut ,Vt ) =√
2 (1 −COR (Ut ,Vt )).
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Figure.  stocksordered least togreatest by their logprice arc lengthand squared returns for theperiod January  throughDecember
.

3. Application

Figure 2 provides a list of 30 stocks whose daily clos-
ing prices were observed from January 3, 2005 to
December 31, 2007 (n = 754). Each stock is accom-
panied by its ticker symbol2 along with both the log
price arc length and log price squared returns for this
time period.3 Note that the order is ascending top-to-
bottom for both measures of volatility.

Figure 3 provides a list of the same stocks over the
same period, but this time the ticker symbol is accom-
panied by the log price absolute returns. The order is

ascending top-to-bottom in terms of absolute returns
but note that this order is slightly different from that of
Fig. 2.

3.1. Maharaj algorithm

Weapplied theMaharaj algorithm twice to these stocks,
once setting the level of significance at α = 0.05 and
then setting it at α = 0.01. For simplicity of representa-
tion, wewrite clusters in the form n1/n2/ · · · /nr, where
cluster 1 contains the first n1 stocks, cluster 2 contains
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Figure .  stocks ordered least to greatest by their log price absolute returns for the period January  through December .

the next n2 stocks, and so on until finally cluster r con-
tains the last nr stocks.

Atα = 0.05, the algorithm identified the same seven
clusters for both arc length and squared returns in the
form of 2/2/3/8/7/2/6 displayed in Fig. 4. At α =

0.01, both arc length and squared returns identified six
clusters, which are exactly the same and in the form of
2/2/3/8/9/6 displayed in Fig. 5.

At α = 0.05, the algorithm identified nine clusters
for absolute returns in the form of 2/1/1/6/8/2/5/4/1
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Figure . Clusters for arc length and squared returns based on Maharaj algorithm at α = 0.05.

Figure . Clusters for arc length and squared returns based on Maharaj algorithm at α = 0.01.

Figure . Clusters for absolute returns based on Maharaj algorithm at α = 0.05.

displayed in Fig. 6. At α = 0.01, eight clusters
were identified for absolute returns in the form of
3/1/5/9/2/5/4/1 displayed in Fig. 7.

Recalling that most financial series have finite sec-
ond moments but infinite fourth moments, and also
that squared returns require a finite fourth moment
for a functional central limit theorem to hold, we

now look at two separate simulation studies to assess
how the Maharaj algorithm handles clustering when a
fourth moment either nearly exists or does not exist
at all.

Study 3.1. Define process {Xn}n≥1 such thatXn = σnεn,
where {εn} is i.i.d white noise and {σn} is a

Figure . Clusters for absolute returns based on Maharaj algorithm at α = 0.01.
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non-negative volatility process with σ 2
n =

10−6 + αX2
n−1 + βσ 2

n−1. We then see that {Xn} ∼
GARCH(1, 1). Four such series, each of length
n = 750, were then generated from each of the
following four cases: (1) α = 0.1, β = 0.8, (2)
α = 0.17, β = 0.795, (3) α = 0.16, β = 0.81, and
(4) α = 0.15, β = 0.82. (Recalling that finite fourth
moments for GARCH(1,1) processes only exist when
β2 + 2αβ + 3α2 < 1, we note that the last three
cases yield processes that have nearly infinite fourth
moments.)

The Maharaj algorithm was then applied to these
sixteen series at the 5% significance level with the
correct number of clusters being four. The observed
clusters generated from the algorithm were evaluated
for accuracy based on the known ground-truth cri-
teria method described in Sec. 2.3.1 of Liao (2005).
Results show that both arc length and squared returns
have an accuracy rate of 64.76% while absolute returns
has a rate of 55.06%. This provides further evidence
that both arc length and squared returns perform in a
similar manner when it comes to clustering based on
volatility.

Study 3.2. Define i.i.d process {Xn}n≥1 such that each
Xn follows a Pareto distribution with a shape parame-
ter of 3 and a scale parameter of 1. The density func-
tion of each Xn then takes the form f (xn) = 3/x4n,
where xn > 1 for each n ≥ 1. (Recalling that the rth
moment for this particular Pareto process only exists
when r < 3, we observe that we are dealing here with
random variables that have a finite secondmoment but
an infinite fourth moment.) Sixteen such series, each
of length n = 750, were then generated from processes
of the form {kXn}, with four each coming the following
four cases: (1) k = 1, (2) k = 1.3, (3) k = 1.5, and (4)
k = 1.7.

The Maharaj algorithm was then applied to these
sixteen series at the 5% significance level with the cor-
rect number of clusters being four. Once again, the
observed clusters generated were evaluated for accu-
racy based on the aforementioned known ground-
truth criteria method. Results show that arc length,
squared returns, and absolute returns have accuracy
rates of 81.85%, 60.42%, and 80.26%, respectively. As
expected, the accuracy rate for squared returns is lower
than that of arc length and absolute returns since the
hypothesis test does not work as well when the fourth
moment is infinite.

Figure . Clusters based on the k-means++ algorithmwith k = 3.

3.2. k -means++ algorithm

We next applied the k-means++ algorithm to the
30 stocks from earlier using Euclidean distance to
partition them into three clusters. The rationale behind
the number three is that we wish to identify stocks
as having low volatility, medium volatility, or high
volatility.

We carried out the algorithm 1, 000 times for each
measure of volatility in order to separate the more sta-
ble clustering schemes from the less stable ones. The
results are given in Fig. 8, where scheme n1/n2/n3
means that the first n1 stocks are low volatility, the next
n2 stocks are medium volatility, and the final n3 stocks
are high volatility. The order of the stocks for arc length
and squared returns comes from Fig. 2 while the order
of the stocks for absolute returns comes from Fig. 3.

As can be seen, the k-means++ algorithm identifies
the exact same clusters for both arc length and squared
returns with 16/11/3 being the most stable scheme
for each of the two volatility measures (it is slightly
more stable for arc length since it is correct more often
compared to squared returns). On the other hand, the
clustering for absolute returns was different since the
stock ordering was different, but it is worth noting that
none of the three schemes in this case had a stability
rate larger than 50%.

3.3. Correlation-based clustering

To begin the correlation-based clustering for the 30
stocks, we first created 753 “pieces” for each stock and
for each of the three volatility measures. The series of
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Figure . Clusters based on correlation distance.

arc length pieces took the form {
√

1+Y 2
t } while the series

of squared and absolute returns pieces took the forms
{Y 2

t } and {|Yt |}, respectively. All three series go from
t = 2 to t = 754.

These new series were created in order to illus-
trate how volatility, not price, changes over time. The
clustering applied to these series utilizes the correla-
tion distance coupled with average linkage described
in Sec. 2.3. As with k-means++, we once again con-
sider three clusters: low volatility, medium volatility,
and high volatility.

Figure 9 gives the results, where the stock ordering
from Fig. 2 is used for all three volatility measures in
order to have the comparisons involved with the corre-
lation process have meaning. As can be seen, both arc
length and squared returns end up with the same clus-
ters, while absolute returns break Google from cluster
1 and put it in cluster 3.

As was done at the end of Sec. 3.1 with the Maharaj
algorithm, we again supplement the correlation-based
clustering results in this sectionwith further simulation
studies using those exact same 32 series (i.e., the same
sixteen GARCH(1, 1) series and sixteen Pareto series).
The accuracy rates under the GARCH(1,1) models for
arc length, squared returns, and absolute returns stand
at 51.67%, 51.07%, and 51.39%, respectively. All three
accuracy rates are closer to each other than before, but
arc length still retains a slightly higher value than the
other two. Results also show accuracy rates of 49.72%,
40.48%, and 51.51% for arc length, squared returns, and
absolute returns, respectively, under the Pareto distri-
butions. As expected, squared returns once again show
lower accuracy rates as expected since these series have
no finite fourth moment.

4. Concluding comments

The results in this article reveal that arc length can
successfully separate highly volatile stocks from less
volatile ones. Arc length works just as well as squared
returns when a finite fourth moment exists and out-
performs it otherwise. Arc length can also quantify risk

for a wide range of time series models, including mul-
tivariate models (see Wickramarachchi et al. (2015)).
It is not clear how squared returns or absolute returns
assess volatility in this multivariate setting.

Arc length can be further generalized to include the
case of arbitrarily spaced time observations. Specifi-
cally, if series {Xt} is observed at times t1, t2, . . . , tn, the
arc length formula in Eq. (1) becomes

n∑
i=2

√
(ti − ti−1)2 + (Xti − Xti−1 )

2.

We note, however, that the functional central limit the-
orem for unequally spaced time series has not been
proved yet and thus it is unknown if the Maharaj algo-
rithm will work in this case. The authors are currently
looking into this.

Notes

1. Persistence is sometimes referred to as volatility clustering,
which is not to be confused with this article’s goal of clus-
tering via the feature of volatility.

2. Eastman Kodak has since changed its ticker symbol to
KODK.

3. If arc length takes the form
∑n

t=2

√
1 +Y 2

t , then
squared and absolute returns take the forms

∑n
t=2Y

2
t

and
∑n

t=2 |Yt |, respectively.
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