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Back in 2011, I was researching the use of arc length as a measure of stock volatility.
Having had a reasonable amount of experience with time series analysis, the stochastic
nature of something like daily price changes was familiar territory, but financial math-
ematics was still somewhat of an unknown quantity. In an effort to become more savvy
in such matters, I began perusing the literature and consequently found a number of
texts that added to my general knowledge. Among these were [1], [2], and [3], but the
one in particular that really captured my attention was Probability Theory in Finance:
A Mathematical Guide to the Black–Scholes Formula by Seán Dineen. Over the next
several months, I read various parts of the work, but ended up having to put it aside as
the volatility investigations got superseded by other pressing projects. In 2013, how-
ever, I picked up the new second edition with a renewed interest (and a freer calendar)
and set myself the strict goal of reading it cover to cover in a year and then writing a
thorough review.

As the title suggests, the central purpose of the book is to derive, interpret, and uti-
lize the Black–Scholes formula for pricing a call option. The work is based on a one-
semester undergraduate course given to economics and finance students at University
College Dublin. While a certain familiarity with the basic principles of finance is cer-
tainly required of the readership, Dineen has in actuality created a very sophisticated
mathematical text. Specifically, its main topics include measure theory, conditional
expectation, martingales, stochastic processes, Brownian motion, and the Itô integral.
These topics are handled with great care and are gradually developed throughout the
chapters without automatically assuming that the reader’s background extends beyond
integral calculus and differential equations.

The first two chapters start off the book by introducing some basic ideas about
money and fair games. Specifically, Chapter 1 discusses risk and interest and their
relationship to both present and discounted values of money. Chapter 2 discusses both
fair and zero-sum games and what it means to calculate their expected winnings. By
introducing the idea of expected winnings early on, Dineen is laying the groundwork
for the more formal concept of expected value which is used extensively in later parts
of the book.

Chapter 3 gets into σ -fields and how one can glean information from filtrations.
Dineen’s motive here is to show how an increasing sequence of nested fields can model
the growing information associated with the passage of time, which is very important
in the financial world. The main example he uses is the measurable space (�,F)
where � denotes the set of all possible future prices that may be taken by a given
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share and F the set of events associated with the share prices. In this case, the natural
filtration adapted to the share price is (Fn)

∞
n=1, where Fn is the history up to the nth day.

Chapters 4 and 5 discuss measurable functions and probability spaces. An F -
measurable function maps an event from σ -field F into a Borel set of real numbers.
Such a transference allows one to measure the likelihood that such events occur. Thus,
we now enter into the realm of probability and these F -measurable functions are
henceforth dubbed random variables. The financial tie-in arises when the first model
for pricing a call option is constructed. Here we learn that a buyer can use the market
price of the share (and interest rates) to determine a fair price for the option, while
the seller will consider the price to be fair if it is possible to hedge any claim (i.e.,
reduce its risk). Independent events within a probability space are used to model the
assumption that investors operate independently while buying and selling shares.

Chapters 6 and 7 delve into expected value, continuity, and integrability. Lebesgue
integration is developed with respect to a probability measure and is defined succes-
sively for simple, positive bounded, positive, and then arbitrary random variables. Both
the monotone and dominated convergence theorems are established in the process.
The Riemann integral is also discussed and it is shown that the Lebesgue integral with
respect to Lebesgue measure generalizes the Riemann integral. Riemann sums end
up playing a role in defining the Itô integral later on in Chapter 12. The central limit
theorem is stated as well, and is later used to help derive the Black–Scholes formula
in Chapter 11.

Chapter 8 elaborates on and extends the first (binomial) model for pricing a call
option first discussed in Chapter 5. Once again, a balanced portfolio to hedge any
claim on the option is constructed, but now information is provided at (discrete) inter-
mediate times during which trading is allowed. The concept of conditional expectation
is introduced to be able to handle the new mathematics involved. Here Dineen is also
setting the stage for martingales, which end up being essential for a more rigorous
formulation of a set of fair games.

Chapter 9 delves deeper into Lebesgue measure, whose existence is formally proven
using countable products of probability measures. The connection between Lebesgue
and Riemann integration discussed in Chapter 7 is now put on a firmer foundation with
the introduction of density functions, and it is shown that the former can in general
handle a wider class of functions than the latter. Chapter 10 introduces martingales
with examples including fair games, random walks, and Brownian motion. A martin-
gale, in addition to allowing several important convergence results, is ultimately used
to model the price of a call option.

In Chapter 11, we finally see the long-awaited Black–Scholes formula, named after
economists Fisher Black (1938–1995) and Myron Scholes (b. 1941), and with impor-
tant contributions by Robert Merton (b. 1944). The formula states that if the share
price of a stock with volatility σ is X0 today, then

X0 N

(
ln(X0/k) + (r + 0.5σ 2)T

σ
√

T

)
− ke−rT N

(
ln(X0/k) + (r − 0.5σ 2)T

σ
√

T

)

is a fair price for a call option with maturity date T and strike price k, provided that r is
the risk-free interest rate. Here N (·) is the distribution function for a standard normal
random variable. Dineen initially arrives at the result using finite risk-neutral probabil-
ities stemming from properties of elementary fair games, but he later presents another,
equivalent derivation that calls upon properties of martingales and Brownian motion.

Chapter 12 brings things to a close by introducing stochastic integration, created
by Kiyoshi Itô (1915–2008), as a way to hedge a call option. Itô integrals provide
yet another way to reach the same price conclusion as the Black–Scholes formula.
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Specifically, let Vt and Xt = X0eμt+σ Wt be the values of the option and share price,
respectively, at time t , where {μt + σ Wt}t≥0 is Brownian motion with drift. To hedge
any claim on the option, a portfolio of θt shares and βt units of a risk-free bond are
held at time t . Supposing that one unit of the bond is worth B(t) at time t , a hedge
occurs if dVt = θt d Xt + βt d B(t). If B(t) = ert with

θt = N

(
ln(Xt/k) + (r + 0.5σ 2)(T − t)

σ
√

T − t

)

and

βt = −ke−rT N

(
ln(Xt/k) + (r − 0.5σ 2)(T − t)

σ
√

T − t

)

for 0 ≤ t ≤ T , we have the same (asymptotic) result from the previous chapter.
So now that an overview of all the chapters has concluded, it’s time to discuss the

actual merits of Dineen’s book. To begin, the content is developed on the appropri-
ate high level and is complemented by both a clear writing style and a comfortable
pace. Like any good mathematics text, every chapter builds upon its predecessors. No
proposition is put forward that isn’t used for some later purpose, and rarely is one
presented without proof. All of the examples given serve their intended purpose of
concept illustration.

One particular stylistic highlight is Dineen’s use of anecdotal footnotes to give im-
portant results an historical setting. Nice biographical sketches are included for many
mathematical “celebrities,” among them Emile Borel, Paul Pierre Lévy, Joseph Leo
Doob, and Guido Fubini. One minor notational improvement might be to use

a.s.→ to
denote almost sure convergence. This type of representation is already used elsewhere

for convergence in distribution (
D→) and Lp convergence (

Lp→), and since Dineen makes
extensive use of sets that behave a certain way “almost everywhere,” the use of

a.s.→
would not only be consistent but also more efficient.

The second edition is not significantly different than the first, but there are a few
changes. Chapters 1 through 8 are essentially the same in both editions, although
some sections have been moved around and others have been combined for a more
streamlined presentation. Specifically, sections 4.1 and 4.2 in the first edition (titled
“The Borel Field” and “Measurable Functions,” respectively) have been combined
into Section 4.1 (“Measurable Functions”) in the second edition. Section 7.1 of the
first edition (“Summation of Series”) has been moved to section 6.5 of the second,
while section 7.7 (“Product Measures”) has been moved to section 9.1 of the second.
Chapter 9 of the second edition is completely new and is entitled “Lebesgue Measure.”
Chapters 9 through 11 of the first edition are now Chapters 10 through 12, respectively,
of the second with very few changes.

There are exercises at the end of each chapter in both editions, but the second edi-
tion has added more problems to each set. Solutions or hints to most of these problems
can be found at the back of the book. Overall, the second edition is an improvement
upon the first edition, although the first was not substandard in any way. To be sure,
there are still a few minor typographical errors in the second edition, but the reader
can easily make his or her own quick corrections based on context.

For further comparable reading, I would recommend [2] and [1]. [2] is a more
compact work and focuses mainly on stochastic differential equations. There is a nice
build-up to the Black–Scholes formula as the feature application, but it doesn’t go too
deeply into areas like hedging and arbitrage. On the other hand, [1] is a more extensive
work and delves into various topics that Dineen does not (e.g., a whole chapter is
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devoted to examining various rates of change of Black–Scholes option prices). Both
texts are well written and serve as nice companion pieces to Dineen.

To conclude, I would certainly recommend Dineen’s book to anyone with an in-
terest in financial mathematics. Although the book was originally written with U.K.
undergraduates in mind, I think it would work better here in the U.S. as a graduate-
level text, and even then it is probably best spread out over two semesters. On the other
hand, an advanced U.S. undergraduate could make an exception. Either way, Dineen
has created a very nice work that has made a positive intellectual impact.
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How to Make Equivalent Measures?

Let � be a σ -algebra and consider the finite measures μ and ν on �. The well-known
Lebesgue decomposition theorem [1, Theorem 37.7] states that ν splits uniquely into
νa,μ � μ and νs,μ ⊥ μ. Furthermore, and this is the crucial point,

νa,μ = sup
n∈N

(
ν ∧ (nμ)

) = lim
n→∞

(
ν ∧ (nμ)

)
,

where
(
ν ∧ (nμ)

)
(S) = inf

T ∈�

{
ν(S ∩ T ) + nμ(S \ T )

}
for all S ∈ �.

Theorem. Let μ and ν be two arbitrary finite measures on the σ -algebra �. Then
the absolutely continuous parts with respect to each other are equivalent measures.
That is, νa,μ � μa,ν and μa,ν � νa,μ.

Proof. Let S ∈ � be a measurable set such that μa,ν(S) = 0. Observe that

0 = μa,ν(S) = sup
n∈N

(
μ ∧ (nν)

)
(S) ≥ (

μ ∧ (nν)
)
(S) ≥ (

μ ∧ ( 1
n ν)

)
(S) ≥ 0

and therefore

0 = (
μ ∧ ( 1

n ν)
)
(S) = n

(
μ ∧ ( 1

n ν)
)
(S) = (

(nμ) ∧ ν
)
(S)

holds for all n ∈ N. This implies that νa,μ � μa,ν . Similarly, μa,ν � νa,μ.

So, to answer the question in the title: just do the Lebesgue decomposition.
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